SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity.
نویسندگان
چکیده
Methylmercury (MeHg) exposure from occupational, environmental, and food sources is a significant threat to public health. MeHg poisonings in adults may result in severe psychological and neurological deficits, and in utero exposures can confer embryonic defects and developmental delays. Recent epidemiological and vertebrate studies suggest that MeHg exposure may also contribute to dopamine (DA) neuron vulnerability and the propensity to develop Parkinson's disease (PD). In this study, we describe a Caenorhabditis elegans model of MeHg toxicity that shows that low, chronic exposure confers embryonic defects, developmental delays, decreases in brood size and animal viability, and DA neuron degeneration. Toxicant exposure results in the robust induction of the glutathione-S-transferases (GSTs) gst-4 and gst-38 that are largely dependent on the PD-associated phase II antioxidant transcription factor SKN-1/Nrf2. We also demonstrate that the expression of SKN-1, a protein previously localized to a small subset of chemosensory neurons and intestinal cells in the nematode, is also expressed in the DA neurons, and a reduction in SKN-1 gene expression increases MeHg-induced animal vulnerability and DA neuron degeneration. These studies recapitulate fundamental hallmarks of MeHg-induced mammalian toxicity, identify a key molecular regulator of toxicant-associated whole-animal and DA neuron vulnerability, and suggest that the nematode will be a useful in vivo tool to identify and characterize mediators of MeHg-induced developmental and DA neuron pathologies.
منابع مشابه
The putative multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans.
Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Rec...
متن کاملGenetic mechanisms of coffee extract protection in a Caenorhabditis elegans model of β-amyloid peptide toxicity.
Epidemiological studies have reported that coffee and/or caffeine consumption may reduce Alzheimer's disease (AD) risk. We found that coffee extracts can similarly protect against β-amyloid peptide (Aβ) toxicity in a transgenic Caenorhabditis elegans Alzheimer's disease model. The primary protective component(s) in this model is not caffeine, although caffeine by itself can show moderate protec...
متن کاملSKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans.
The mammalian Nrf/CNC proteins (Nrf1, Nrf2, Nrf3, p45 NF-E2) perform a wide range of cellular protective and maintenance functions. The most thoroughly described of these proteins, Nrf2, is best known as a regulator of antioxidant and xenobiotic defense, but more recently has been implicated in additional functions that include proteostasis and metabolic regulation. In the nematode Caenorhabdit...
متن کاملThe Conserved SKN-1/Nrf2 Stress Response Pathway Regulates Synaptic Function in Caenorhabditis elegans
The Nrf family of transcription factors plays a critical role in mediating adaptive responses to cellular stress and defends against neurodegeneration, aging, and cancer. Here, we report a novel role for the Caenorhabditis elegans Nrf homolog SKN-1 in regulating synaptic transmission at neuromuscular junctions (NMJs). Activation of SKN-1, either by acute pharmacological treatment with the mitoc...
متن کاملDirect interaction between the WD40 repeat protein WDR-23 and SKN-1/Nrf inhibits binding to target DNA.
SKN-1/Nrf transcription factors activate cytoprotective genes in response to reactive small molecules and strongly influence stress resistance, longevity, and development. The molecular mechanisms of SKN-1/Nrf regulation are poorly defined. We previously identified the WD40 repeat protein WDR-23 as a repressor of Caenorhabditis elegans SKN-1 that functions with a ubiquitin ligase to presumably ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 118 2 شماره
صفحات -
تاریخ انتشار 2010